ChromaDB with LangChain
graph TD;
A(Home) --> B(OpenAI);
A --> C(LangChain);
A --> D(LlamaIndex);
A --> E(Hire me);
A --> F(Sign in);
A --> G(Subscribe);
C --> H(Chroma: One of the best vector databases to use with LangChain for storing embeddings);
C --> I(jeff);
C --> J(Dec 11, 2023);
H --> K(Introduction);
H --> L(What is LangChain?);
H --> M(What are vector embeddings?);
H --> N(What is Chroma?);
K --> O(Building our app);
L --> P(LangChain);
L --> Q(Convert text to SQL queries);
L --> R(Summarization of videos);
M --> S(Similarity Search);
M --> T(Anomaly Detection);
M --> U(Natural Language Processing Tasks);
N --> V(Chroma DB Logo);
V --> W(Chroma official website);
O --> X(Environment setup);
O --> Y(Install Chroma & LangChain);
O --> Z(Create a vector store from chunks);
O --> AA(Perform a similarity search locally);
O --> AB(Query the model);
X --> AC(Grab your OpenAI API Key);
X --> AD(Set up Python application);
AD --> AE(Install OpenAI Python SDK);
AD --> AF(Install Chroma);
AD --> AG(Install LangChain, PyPDF, and tiktoken);
Z --> AH(Download and place the file);
Z --> AI(Use the LangChain PDF loader);
AI --> AJ(PyPDFLoader);
AI --> AK(Use the LangChain RetrievalQA chain);
AK --> AL(Prepare query);
AB --> AM(Success!);
AM --> AN(Bonus: Common methods);
AN --> AO(Get a collection of documents);
AN --> AP(Update a document in the collection);
AN --> AQ(Delete a collection);
AP --> AR(Final thoughts);
AR --> AS(More from Getting Started with AI);
AR --> AT(More from the Web);
Last update :
13 novembre 2024
Created : 13 novembre 2024
Created : 13 novembre 2024